Production, properties, and some new applications of chitin and its derivatives.
نویسندگان
چکیده
Chitin is a polysaccharide composed from N-acetyl-D-glucosamine units. It is the second most abundant biopolymer on Earth and found mainly in invertebrates, insects, marine diatoms, algae, fungi, and yeasts. Recent investigations confirm the suitability of chitin and its derivatives in chemistry, biotechnology, medicine, veterinary, dentistry, agriculture, food processing, environmental protection, and textile production. The development of technologies based on the utilization of chitin derivatives is caused by their polyelectrolite properties, the presence of reactive functional groups, gel-forming ability, high adsorption capacity, biodegradability and bacteriostatic, and fungistatic and antitumour influence. Resources of chitin for industrial processing are crustacean shells and fungal mycelia. Fungi contain also chitosan, the product of N-deacetylation of chitin. Traditionally, chitin is isolated from crustacean shells by demineralization with diluted acid and deproteinization in a hot base solution. Furthermore, chitin is converted to chitosan by deacetylation in concentrated NaOH solution. It causes changes in molecular weight and a degree of deacetylation of the product and degradation of nutritionally valuable proteins. Thus, enzymatic procedures for deproteinization of the shells or mold mycelia and for chitin deacetylation were investigated. These studies show that chitin is resistant to enzymatic deacetylation. However, chitin deacetylated partially by chemical treatment can be processed further by deacetylase. Efficiency of enzymatic deproteinization depends on the source of crustacean offal and the process conditions. Mild enzymatic treatment removes about 90% of the protein and carotenoids from shrimp-processing waste, and the carotenoprotein produced is useful for feed supplementation. In contrast, deproteinization of shrimp shells by Alcalase led to the isolation of chitin containing about 4.5% of protein impurities and recovery of protein hydrolysate.
منابع مشابه
Chitin and Chitosan: Structure, Properties and Applications
Chitin and chitosan are the most abundant natural amino polysaccharide that are non-toxic, biodegradable and biocompatible. They have become of great interest not only as an underutilized resource, but also as a new functional material of high potential in various fields. They are biopolymers having immense structural possibilities for chemical and mechanical modifications to generate novel pro...
متن کاملمقایسه ی خواص ضد باکتری کیتین، کیتوزان و کیتوالیگومرهای به دست آمده از پوسته ی میگوی سفید سرتیز (Metapenaeus affinis )
Background and purpose: Chitin is one of the main components of crustaceans’ exoskeleton. Chitosan is produced by deacetylation of chitin. Molecular weight and degree of deacetylation play important roles in biological activity of chitin, chitosan, and their derivatives. So far, various derivatives of chitin and chitosan are obtained. The purpose of this study was to prepare derivatives o...
متن کاملApplications of Chitin and Its Derivatives in Biological Medicine
Chitin and its derivatives-as a potential resource as well as multiple functional substrates-have generated attractive interest in various fields such as biomedical, pharmaceutical, food and environmental industries, since the first isolation of chitin in 1811. Moreover, chitosan and its chitooligosaccharides (COS) are degraded products of chitin through enzymatic and acidic hydrolysis processe...
متن کاملPhotosensitizing properties for porphyrazine and some derivatives
We have investigated photosensitizing properties for porphrazine and eleven of its related derivatives based on time-dependent density functional theory (TD-DFT) calculations. The modles have been divided into two categories based on the existence of CN functional group in one category but not in the other one. The other functional groups include H, CH3, F, CF3, C6H5, and C6F5 counterparts. The...
متن کاملA new two-step Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrodinger equation and related IVPs with oscillating solutions
A new two-step implicit linear Obrechkoff twelfth algebraic order method with vanished phase-lag and its first, second, third and fourth derivatives is constructed in this paper. The purpose of this paper is to develop an efficient algorithm for the approximate solution of the one-dimensional radial Schrodinger equation and related problems. This algorithm belongs in the category of the multist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Critical reviews in food science and nutrition
دوره 43 2 شماره
صفحات -
تاریخ انتشار 2003